Owner’s Manual
®
PowerVerter
RV Series
(v. 3.0)
DC-to-AC Inverter/Chargers
1111 W. 35th Street, Chicago, IL 60609 USA
Customer Support: (773) 869-1234
Input
Output
Invert:
12 VDC
120V, 60 Hz. AC
12 VDC
Charge:
120V, 60 Hz. AC
Quiet Mobile Power
Congratulations! You’ve purchased the most advanced, feature-rich Inverter/Charger designed for recreational vehicle applications. Tripp Lite
RV Inverter/Chargers are the quiet alternative to gas generators—with no fumes, fuel or noise to deal with! You get AC electricity anywhere
and anytime you need it: rolling down the highway, dry camping in majestic back country or parked overnight at a money-saving non-electric
®
site. RV Inverter/Chargers provide your equipment with utility- or generator-supplied AC electricity (filtered through premium ISOBAR surge pro-
tection) whenever available. In addition, your RV Inverter/Charger automatically powers your RV’s 12V system and recharges your connected battery
bank—doing what traditional RV converter/chargers do. Whenever power blackouts, brownouts or high voltages occur, your RV Inverter/Charger imme-
diately and automatically switches over to inverting battery output to power connected AC equipment.
Better for Your Equipment
Premium Protection Levels
®
• Built-In ISOBAR Surge Protection
• Automatic Overload Protection
Ideal Output for All Loads (including computers)
• Frequency-Controlled Output
• Fast Load Switching
• Balanced Load Sharing*
Better for Your Batteries
Better for You
Faster Battery Recharge
• High-Amp, 3-Stage Battery Charger (adjustable)
Critical Battery Protection
• Battery Charge Conserver (Load Sense)*
• Battery Temperature Sensing*
• High-Efficiency DC-to-AC Inversion
Quiet, Simple, Maintenance-Free Operation
• Multi-Function Lights & Switches
• Automatic Generator Starting*
• Moisture-Resistant Construction†
Contents
Specifications/Warranty
Safety
2
Battery Selection
8
3
Mounting
9
Feature Identification
Operation
4
Battery Connection
10
5
AC Input/Output Connection
Service/Maintenance/Troubleshooting
11
Configuration
6-7
12 (back page)
* Available on all models except 612 models. †Inverter/Chargers are moisture-resistant, not waterproof.
Copyright © 2003. PowerVerter® is a registered trademark of Tripp Lite. All rights reserved.
Important Safety Instructions
SAVE THESE INSTRUCTIONS!
This manual contains important instructions and warnings that should be followed during the installation, operation and storage of all Tripp Lite
Inverter/Chargers.
Location Warnings
• Install your Inverter/Charger (whether for a mobile or stationary application) in a location or compartment that minimizes exposure to
heat, dust, direct sunlight and moisture.
• Although your Inverter/Charger is moisture resistant, it is NOT waterproof. Flooding the unit with water will cause it to short circuit
and could cause personal injury due to electric shock. Never immerse the unit, and avoid any area where standing water might
accumulate. Mounting should be in the driest location available.
• Leave a minimum of 2" clearance at front and back of the Inverter/Charger for proper ventilation. To avoid automatic Inverter/Charger
shutdown due to overtemperature, any compartment that contains the Inverter/Charger must be properly ventilated with adequate
outside air flow. The heavier the load of connected equipment, the more heat will be generated by the unit.
• Do not install the Inverter/Charger directly near magnetic storage media, as this may result in data corruption.
• Do not install near flammable materials, fuel or chemicals.
Battery Connection Warnings
• The Inverter/Charger will not operate (with or without utility power) until batteries are connected.
• Multiple battery systems must be comprised of batteries of identical voltage, age, amp-hour capacity and type.
• Because explosive hydrogen gas can accumulate near batteries if they are not kept well ventilated, your batteries should not be
installed (whether for a mobile or stationary application) in a “dead air” compartment. Ideally, any compartment would have some
ventilation to outside air.
• Sparks may result during final battery connection. Always observe proper polarity as batteries are connected.
• Do not allow objects to contact the two DC input terminals. Do not short or bridge these terminals together. Serious personal injury
or property damage could result.
Equipment Connection Warnings
Do not use a Tripp Lite RV Inverter/Charger in life support or healthcare applications where a malfunction or failure of a
Tripp Lite RV Inverter/Charger could cause failure of, or significantly alter the performance of, a life support device or
medical equipment.
• Corded models: Do not modify the Inverter/Charger’s plug or receptacle in a way that eliminates its ground connection. Do not use
power adapters that will eliminate the plug’s ground connection.
• Connect your Inverter/Charger only to a properly grounded AC power outlet or hardwired source. Do not plug the unit into itself; this
will damage the device and void your warranty.
• You may experience uneven performance results if you connect a surge suppressor, line conditioner or UPS system to the output of
the Inverter/Charger.
Operation Warnings
• Your Inverter/Charger does not require routine maintenance. Do not open the device for any reason. There are no user serviceable parts
inside.
• Potentially lethal voltages exist within the Inverter/Charger as long as the battery supply and/or AC input are connected. During any
service work, the battery supply and AC input connection (if any) should therefore be disconnected.
• Do not connect or disconnect batteries while the Inverter/Charger is operating in either inverting or charging mode. Operating Mode
Switch should be in the OFF position. Dangerous arcing may result.
3R
Feature Identification
Identify the premium features on your specific model and quickly locate instructions on how to maximize their use.
Configuration DIP Switches: optimize Inverter/Charger
operation depending on your application. See pages 6-7 for
setting instructions.
Hardwire AC Input/Output Terminals (not on corded
models): securely connect the Inverter/Charger to vehicle or
facility electrical system input and recommended GFCI receptacle
output. See page 11 for connection instructions.
1
8
Operating Mode Switch: controls Inverter/Charger operation.
The “AUTO/REMOTE” setting ensures your equipment
receives constant, uninterrupted AC power. It also enables the
Inverter/Charger to be remotely monitored and controlled with
an optional remote module (Tripp Lite model APSRM2, sold
separately or included with select models). The “CHARGE
ONLY” setting allows your batteries to return to full charge faster
by turning the inverter off which halts battery discharging. See
page 5 for setting instructions.
2
Resettable Circuit Breaker: protect your Inverter/Charger against
damage due to overload. See page 5 for resetting instructions.
9
Remote Control Module Connector: allows remote monitoring
and control with an optional module (Tripp Lite model
APSRM2, sold separately or included with select models). See
remote module owner’s manual for connection instructions.
10
Battery Charge Conserver (Load Sense) Dial (not on 612
models): conserves battery power by setting the low-load level
at which the Inverter/Charger’s inverter automatically shuts off.
See page 7 for setting instructions.
11
Operation Indicator Lights: intuitive “traffic light” signals
show whether the Inverter/Charger is operating from AC line
power or DC battery power. It also warns you if the connected
equipment load is too high. See page 5 for instructions on
reading indicator lights.
3
4
Main Ground Lug: properly grounds the Inverter/Charger to
vehicle grounding system or to earth ground. See page
10 for connection instructions.
12
13
Battery Indicator Lights: intuitive “traffic light” signals show
approximate charge level of your battery. See page 5 for
instructions on reading indicator lights.
Multi-Speed Cooling Fan: quiet, efficient fan prolongs equipment
service life.
DC Power Terminal Cover Plate
14
15
16
DC Power Terminals: connect to your battery terminals. See
page 10 for connection instructions.
5
6
Hardwire AC Input/Output Cover Plate
Battery Temperature Sensing Connector (not on 612 models):
prolongs battery life by adjusting charge based on battery tem-
perature. Use with cable (included on select models). See page
7 for details.
Ground Fault Interrupter (GFI) AC Receptacles (not on
hardwire models): allow you to connect equipment that would
normally be plugged into a utility outlet. They feature ground
fault interrupter switches that trip if there is excessive current
on the ground safety wire.
Automatic Generator Start Connector (not on 612 models):
automatically cycles generator based on battery voltage. Use
with user-supplied cable. See page 7 for details.
17
7
AC Input Cord (not on hardwire models): connects the
Inverter/Charger to any source of utility- or generator-supplied
AC power. See page 11 for connection instructions.
4
3
2
1
13
10
11
16
17
9
*
2
3
1
14
13
4
10
11 †
16†
14
Side Mounted,
Not Shown
Side Mounted,
Not Shown
Side Mounted,
Not Shown
†
Side Mounted,
Not Shown
17
9
“FOR USE WITH COPPER WIRE ONLY”
HOT IN
NEUTRAL IN
GROUND IN
GROUND OUT
HOT OUT
6
NEUTRAL OUT
5
Front View (Single Input/Output Hardwire Models)
12**
8
15
5
7
* 612 models have only one set of DIP Switches. ** Select models include front-mounted ground lug. † Available on all models except 612 models.
Front View (Corded Models)
4
10 3
2
11
16
1
13
17
9
12
AC IN
1
HOT
NEU
GND
-
-
BROWN
BLUE
8
-
GRN/YEL
AC IN
2
5
HOT
NEU
GND
-
-
-
GRAY
WHITE
GRN/YEL
AC OUT
1
HOT
NEU
GND
-
-
-
BLACK
YELLOW
GRN/YEL
AC OUT
2
HOT
NEU
GND
-
-
-
ORANGE
RED
GRN/YEL
12
Rear View (Single Input/Output Hardwire Models and Select Corded Models)
Front View (Dual Input/Output Hardwire Models)
4R
Operation
LOAD Red Indicator: This red light will ILLUMI-
NATE CONTINUOUSLY whenever the inverter is
functioning and the power demanded by connected
appliances and equipment exceeds 100% of load
capacity. The light will BLINK to alert you when the
inverter shuts down due to a severe overload or overheating. If this
happens, turn the operating mode switch “OFF”; remove the over-
load and let the unit cool. You may then turn the operating mode
switch to either “AUTO/REMOTE” or “CHARGE ONLY” after it
has adequately cooled. This light will be off when AC power is sup-
plying the load.
Switch Modes
After configuring, mounting and connecting your Inverter/Charger,
you are able to operate it by switching between the following oper-
ating modes as appropriate to your situation:
AUTO/REMOTE: Switch to this mode when you need
constant, uninterrupted AC power for connected
appliances and equipment. The Inverter/Charger will
continue to supplyAC power to connected equipment and
to charge your connected batteries while utility- or
generator-supplied AC power is present. Since the inverter is ON (but in
Standby) in this mode, it will automatically switch to your battery
system to supply AC power to connected equipment in the absence
of a utility/generator source or in over/under voltage situations.
“AUTO/REMOTE” also enables an optional remote control module
(Tripp Lite model APSRM2, sold separately or included with select
models) to function when connected to the unit.
BATTERY Indicator Lights: These three lights will illuminate in
several sequences to show the approximate charge level of your con-
nected battery bank and alert you to two fault conditions:
Approximate Battery Charge Level*
Battery Lights
Illuminated
Green
Battery Capacity
(Charging/Discharging)
91%–Full
CHARGE ONLY: Switch to this mode when you
are not using connected appliances and equipment in
order to conserve battery power by disabling the
inverter. The Inverter/Charger will continue to supply
AC power to connected equipment and charge con-
nected batteries while utility- or generator-supplied AC power is
present. However, since the inverter is OFF in this mode, it WILL NOT
supply AC power to connected equipment in the absence of a
utility/generator source or in over/under voltage situations.
1
2
3
4
5
6
7
1
2
5
3
6
Green & Yellow
Yellow
81%–90%
61%–80%
41%–60%
21%–40%
1%–20%
Yellow & Red
Red
4
7
All three lights off
Flashing red
0% (Inverter
shutdown)
OFF: Switch to this mode to shut down the
Inverter/Charger completely, preventing the inverter
from drawing power from the batteries, and prevent-
ing utility AC from passing through to connected
equipment or charging the batteries. Use this switch
* Charge levels listed are approximate. Actual conditions vary
depending on battery condition and load.
Fault Condition
to automatically reset the unit if it shuts down due to overload or
overheating. First remove the excessive load or allow the unit to suf-
ficiently cool (applicable to your situation). Switch to “OFF”, then
back to “AUTO/REMOTE” or “CHARGE ONLY” as desired. If
unit fails to reset, remove more load or allow unit to cool further and
retry. Use an optional remote control module (Tripp Lite model
APSRM2, sold separately or included with select models) to reset
unit due to overload and overtemperature.
Battery Lights
Illuminated
Fault
Condition
1
2
All three lights
flash slowly*
Excessive discharge
(Inverter shutdown)
2
1
All three lights
flash quickly**
Overcharge (Charger
shutdown)
*Approximately ½ second on, ½ second off. See Troubleshooting section. ** Approximately ¼
second on, ¼ second off. May also indicate a battery charger fault exists. See Troubleshooting
section.
Indicator Lights
Your Inverter/Charger (as well as an optional Tripp Lite Remote
Control Module, sold separately or included with select models) is
equipped with a simple, intuitive, user-friendly set of indicator lights.
These easily-remembered “traffic light” signals will allow you, shortly
after first use, to tell at a glance the charge condition of your batteries,
as well as ascertain operating details and fault conditions.
Resetting Your Inverter/Charger to
Restore AC Power
Your Inverter/Charger may cease supplying AC power or DC charg-
ing power in order to protect itself from overload or to protect your
electrical system. To restore normal functioning:
LINE Green Indicator: If the operating mode
switch is set to “AUTO/REMOTE”, this light will
ILLUMINATE CONTINUOUSLY when your con-
nected equipment is receiving continuous AC power
supplied from a utility/generator source.
Overload Reset: Switch operating mode switch to “OFF” and
remove some of the connected electrical load (ie: turn off some of
the AC devices drawing power which may have caused the overload
of the unit). Wait one minute, then switch operating mode switch
back to either “AUTO/REMOTE” or “CHARGE ONLY.”
If the operating mode switch is set to “CHARGE ONLY”, this light
will BLINK to alert you that the unit’s inverter is OFF and will NOT
supply AC power in the absence of a utility/generator source or in
over/under voltage situations.
Output Circuit Breaker Reset: Alternatively, check output circuit
breaker(s) on the unit's front panel. If tripped, remove some of the elec-
trical load, then wait one minute to allow components to cool before
resetting the circuit breaker. See Troubleshooting for other possible
reasons AC output may be absent.
INV (Inverting) Yellow Indicator: This light will
ILLUMINATE CONTINUOUSLY whenever connected
equipment is receiving battery-supplied, inverted AC
power (in the absence of a utility/generator source or in
over/under voltage situations). This light will be off
when AC power is supplying the load. This light will BLINK to alert you if
the load is less than the Battery Charge Conserver (Load Sense) setting.
5R
Configuration
Set Configuration DIP Switches
Using a small tool, set the Configuration DIP Switches (located on the front panel, see diagram) to optimize Inverter/Charger operation
depending on your application. RV612UL and RV612ULH models include one set of four DIP Switches. All other models include an additional set
of four DIP switches to configure additional operational functions. Refer to the appropriate section to review the instructions for your
specific model.
B4
B3 B2
B1
A4
A3 A2
A1
INPUT C/B 10A
Group B Dip Switches (Not on 612 Models)
Group A Dip Switches (All Models)
Group A DIP Switches (All Models)
Using a small tool, configure your Inverter/Charger by setting the four Group A DIP Switches (located on the front panel of your unit; see
diagram) as follows:
A1
Select Battery Type—REQUIRED
(All models)
Select High AC Input Voltage Point
for Switching to Battery—OPTIONAL*
(All Models)
A2
A4 A3 A2 A1
A4 A3 A2 A1
CAUTION: The Battery Type DIP Switch setting must
match the type of batteries you connect, or your batteries
may be degraded or damaged over an extended period of
time. See “Battery Selection,” p. 8 for more information.
Battery Type
Switch Position
Up
Voltage
145V
Switch Position
Gel Cell (Sealed) Battery
Wet Cell (Vented) Battery
Up
Down (factory setting)
135V
Down (factory setting)
All Models Except 612 Models
612 Models Only
A4
A3
A3
Settings
&
A4 A3 A2 A1
Select Low AC Input Voltage Point
for Switching to Battery—
OPTIONAL*
A4 A3
A4 A3 A2 A1
Select Low AC Input Point for Switching
to Battery—OPTIONAL
Voltage
105V
95V
Switch Position
Up
Down (factory setting)
Switch
Position
A4 A3 A2 A1
Voltage
105V
95V
85V
75V
#A4 Up & #A3 Up
Set Battery Charging Amps Type—
OPTIONAL
A4
High Charge Amp
Low Charge Amp
A4 A3 A2 A1
#A4 Up & #A3 Down
#A4 Down & #A3 Up
A4 A3 A2 A1
Check specifications on for your unit’s high- and
low-charging amp options. By setting on high
charging, your batteries will charge at maximum
speed and your RV 12V DC system loads will be well-supplied. When setting on
low charging, you lengthen the life of your batteries (especially smaller ones).
#A4 Down & #A3 Down
(factory setting)
A4 A3 A2 A1
Battery Charger Switch Position
High Charge Amp Up
Low Charge Amp Down (factory setting)
* Most of your connected appliances and equipment will perform adequately when your Inverter/Charger’s High AC Input Voltage Point (DIP Switch #2 of Group A) is set to 135V and its Low AC Voltage Input Point (DIP Switches #3 and #4 of Group A or DIP Switch #3 for
612 models) are set to 95V. However, if the unit frequently switches to battery power due to momentary high/low line voltage swings that would have little effect on equipment operation, you may wish to adjust these settings. By increasing the High AC Voltage Point and/or
decreasing the Low AC Voltage Point, you will reduce the number of times your unit switches to battery due to voltage swings.
Group B DIP Switches (Not on 612 Models)
B1 B2
Select Load Sharing—OPTIONAL (Not on 612 Models)
Your Inverter/Charger features a high-output battery charger that can draw a significant amount of AC power from your utility source or
generator when charging at its maximum rate. If your unit is supplying its full AC power rating to its connected heavy electrical loads at the
same time as this high charging occurs, the AC input circuit breaker could trip, resulting in the complete shut off of pass-through utility power.
To reduce the chance of tripping this breaker, all RV Inverter/Chargers (except models RV612UL and RV612ULH) may be set to automatically limit
the charger output. This keeps the sum of the unit’s AC load and charge power within the circuit breaker rating. This charger-limiting func-
tion has four settings, allowing you to reduce the charger’s draw lower and lower, as needed, if the AC input circuit breaker keeps tripping
under the normal AC loads of devices you have connected downline from the unit. The figures on the next page show how to set your DIP
Switches to determine how heavy the connected load can be on your Inverter/Charger before charger-limiting begins.
6R
(continued)
Configuration
Select Battery Charger-Limiting Points—OPTIONAL
(Not on 612 Models)
Least Limiting (#B1 Up & #B2 Down):
Charger-limiting begins when the
Inverter/Charger’s load reaches 66% of the
Inverter/Charger’s load rating. Charger
output falls gradually from full output at
B4 B3 B2 B1
B4 B3 B2 B1
Most Limiting (#B1 & #B2 Up, factory setting):
Charger-limiting takes effect the moment
any 120VAC load is applied; charger output
falls gradually from full output at no 120V
load passing through to no output at full load.
66% of the Inverter/Charger’s load rating to about 40% of full output
at full load.
B4 B3 B2 B1
No Limiting (#B1 & #B2 Down): No
charger-limiting occurs at any load size.
B4 B3 B2 B1
Less Limiting (#B1 Down & #B2 Up):
Charger-limiting begins when the
Inverter/Charger’s load reaches 33% of the
Inverter/Charger’s load rating. Charger
output falls gradually from full output at 33% of the
Inverter/Charger’s load rating to about 40% of full output at full load.
Select Equalize Battery Charge—OPTIONAL
(Not on 612 Models)
Setting Procedure
B3
• Move to “Equalize” (DOWN) position for three seconds.
B4 B3 B2 B1 Reset
This DIP Switch is momentarily engaged
to begin the process of equalizing the
charge state of your battery’s cells by time-
limited overcharge of all cells. This can
extend the useful life of certain types of batteries; consult with your
battery’s manufacturer to determine if your batteries could benefit
from this process. The charge equalization process is automatic;
once started, it can only be stopped by removing the input power.
• Move to “Reset” (UP) position and leave it there. This is the
factory default setting.
CAUTION: Do not leave DIP switch #B3 in the down position after beginning process. Battery
charge equalization should only be performed in strict accordance with the battery manufacturer’s
instructions and specifications.
Equalize
Battery Charge
Reset
Switch Position
Up (factory setting)
Down—momentarily
Equalize
Set Battery Charging Amps—OPTIONAL (function included
on
Battery Charger
Low Charge Amps
High Charge Amps
Switch Position
Up
B4
switch on 612 models)
A4
Down (factory setting)
Check specifications for your unit’s high- and
low-charging amp options. By setting on
high charging, your batteries will charge at
maximum speed and your RV 12V DC
system loads will be well-supplied. When
B4 B3 B2 B1
CAUTION: When switching to the High Charge Amp setting, the user must ensure that the amp
hour capacity of their battery system exceeds the amperage of the High Charge Amp setting or
the batteries may be damaged or degraded.
setting on low charging, you lengthen the life of your batteries
(especially smaller ones).
Set Battery Charge Conserver (Load Sense) Dial—OPTIONAL (Not on 612 models)
In order to save battery power, the unit’s inverter automatically shuts off in the absence of any power demand from connected
equipment or appliances (the electrical load). When the unit detects a load, it automatically turns its inverter function on.
Users may choose the minimum load the Inverter/Charger will detect by adjusting the Battery Charge Conserver Dial (see
diagram). Using a small tool, turn the dial clockwise to lower the minimum load that will be detected, causing the inverter to
turn on for smaller loads. When the dial is turned fully clockwise, the inverter will operate even when there is no load. Turn the dial counter-
clockwise to increase the minimum load that will be detected, causing the inverter to stay off until the new minimum load is reached.
Note: the factory setting for the dial is fully clockwise. However, based on the threshold load to which you’d like the inverter to respond, you should adjust the dial counterclockwise to reduce its sensi-
tivity until the inverter is active only when connected equipment or appliances are actually in use.
Connect Remote Control—OPTIONAL (All models)
All models feature an 8-conductor telephone style receptacle on the front panel for use with an optional remote control module (Tripp Lite model
APSRM2, sold separately or included with select models). The remote module allows the Inverter/Charger to be mounted in a compartment or cabinet out
of sight, while operated conveniently from within the living area or control panel of your RV. See instructions packed with the remote control module.
Connect Battery Temperature Sensing Cable—OPTIONAL (not on 612 models)
The battery temperature sensing function prolongs battery life by adjusting the charge float voltage level based on battery temperature. Connect
the sensor cable (the cable, included with select models, has an RJ style connector on one end and a black sensor on the other) to the RJ
style jack located on the side of the Inverter/Charger labeled “Remote Temp. Sense.” Affix the sensor to the side of your battery below the
electrolyte level. To guard against false readings due to ambient temperature, place the sensor between batteries, if possible, or away from
sources of extreme heat or cold. If the sensor cable is not used, the Inverter/Charger will charge according to its default 25º C values.
Pin Configuration
Utilize Automatic Generator Starter Capability—OPTIONAL (not on 612 models))
All models except 612 models include an RJ type modular jack on the side panel labeled “Generator Start”. Attach to vehicle
generator ON/OFF switching mechanism with user-supplied cable (see Pin Configuration Diagram). Once
attached, the interface will allow the Inverter/Charger to automatically switch a vehicle generator on when connected bat-
tery voltage levels are low (11.6 VDC) and switch it off when battery voltage levels are high (14.1 VDC).
1
2 - Common
2
3 - N.C.
(Normally Closed)
3
4
4 - N.O.
(Normally Open)
5
6
7R
Battery Selection
Select Auxiliary Battery Type (if any)
Select “Deep Cycle” batteries to receive optimum performance from your Inverter/Charger. Do not use ordinary car or starting batteries or batteries
rated in Cold Cranking Amps (CCA). If the batteries you connect to the Inverter/Charger are not true Deep Cycle batteries, their operational life-
times may be significantly shortened. If you are using the same battery bank to power the Inverter/Charger as well as DC loads, your battery bank
will need to be appropriately sized (larger loads will require a battery bank with a larger amp-hour capacity) or the operational lifetimes of the bat-
teries may be significantly shortened.
Batteries of either Wet-Cell (vented) or Gel-Cell /Absorbed Glass Mat (sealed) construction are ideal. 6-volt “golf cart”, Marine Deep-Cycle
or 8D Deep-Cycle batteries are also acceptable. You must set the Inverter/Charger’s Battery Type DIP Switch (see Configuration section
on page 6 for more information) to match the type of batteries you connect or your batteries may be degraded or damaged over an extend-
ed period of time. In many cases, the vehicle battery may be the only one installed. Auxiliary batteries must be identical to the vehicle bat-
teries if they are connected to each other.
Match Battery Amp-Hour Capacity to Your Application
Select a battery or system of batteries that will provide your Inverter/Charger with proper DC voltage and an adequate amp-hour capacity to
power your application. Even though Tripp Lite Inverter/Chargers are highly-efficient at DC-to-AC inversion, their rated output capacities are
limited by the total amp-hour capacity of connected batteries and the support of your vehicle’s alternator if the engine is kept running.
Example
Tools
• STEP 1: Determine Total Wattage Required
¼" Drill
Orbital Sander
Cordless Tool Charger
Add the wattage ratings of all equipment you will connect to your Inverter/Charger.
Wattage ratings are usually listed in equipment manuals or on nameplates. If your
equipment is rated in amps, multiply that number timesAC utility voltage to determine
watts. (Example: a ¼ in. drill requires 2½ amps. 2½ amps × 120 volts = 300 watts .)
300W
+
220W
+
20W
=
540W
Note: Your Inverter/Charger will operate at higher efficiencies at about 75% - 80% of nameplate rating.
Appliances
Blender
Color TV
Laptop Computer
300W
+
140W
+
100W
=
540W
• STEP 2: Determine DC Battery Amps Required
Divide the total wattage required (from step 1, above) by the battery voltage (12)
to determine the DC amps required.
540 watts ÷ 12V = 45 DC Amps
• STEP 3: Estimate Battery Amp-Hours Required (for operation unsupported
by the alternator)
Multiply the DC amps required (from step 2, above) by the number of hours you
estimate you will operate your equipment exclusively from battery power
before you have to recharge your batteries with utility- or generator-supplied
AC power. Compensate for inefficiency by multiplying this number by 1.2.
This will give you a rough estimate of how many amp-hours of battery power
(from one or several batteries) you should connect to your Inverter/Charger.
45 DC Amps × 5 Hrs. Runtime
× 1.2 Inefficiency Rating = 270 Amp-Hours
NOTE! Battery amp-hour ratings are usually given for a 20-hour discharge rate. Actual amp-hour capacities are less
when batteries are discharged at faster rates. For example, batteries discharged in 55 minutes provide only 50% of
their listed amp-hour ratings, while batteries discharged in 9 minutes provide as little as 30% of their amp-hour ratings.
• STEP 4: Estimate Battery Recharge Required, Given Your Application
You must allow your batteries to recharge long enough to replace the charge
lost during inverter operation or else you will eventually run down your batteries.
To estimate the minimum amount of time you need to recharge your batteries
given your application, divide your required battery amp-hours (from step 3,
above) by your Inverter/Charger’s rated charging amps (see Specifications section).
270 Amp-Hours ÷ 55 Amps
Inverter/Charger Rating = 5 Hours Recharge
NOTE! For Tripp Lite Inverter/Chargers providing 1000 watts or less of continuous AC power, a full-size battery
will normally allow sufficient power for many applications before recharging is necessary. For mobile applications,
if a single battery is continuously fed by an alternator at high idle or faster, then recharging from utility or generator
power may not be necessary. For Tripp Lite Inverter/Chargers over 1000 watts used in mobile applications, Tripp Lite
recommends you use at least two batteries, if possible fed by a heavy-duty alternator anytime the vehicle is running.
Tripp Lite Inverter/Chargers will provide adequate power for ordinary usage within limited times without the
assistance of utility or generator power. However, when operating extremely heavy electrical loads at their peak
in the absence of utility power, you may wish to “assist your batteries” by running an auxiliary generator or vehicle
engine, and doing so at faster than normal idling.
8R
Mounting
WARNING! Mount your Inverter/Charger BEFORE DC battery and AC power
connection. Failure to follow these instructions may lead to personal injury
and/or damage to the Inverter/Charger and connected systems.
Tripp Lite manufactures a variety of different Inverter/Chargers with a variety of different mounting options for use in vehicular or non-vehicular
applications. Tripp Lite recommends permanent mounting of your Inverter/Charger in any of the configurations illustrated below. User must
supply mounting hardware and is responsible for determining if the hardware and mounting surface are suitable to support the weight of the
Inverter/Charger. Contact Tripp Lite if you require further assistance in mounting your Inverter/Charger.
Vehicular and Non-Vehicular Horizontal Mount
Vehicular and Non-Vehicular Horizontal Mount
(612 models only)
(All models except 612)
A
A Using the measurements from the diagram, install two user-supplied ¼"
(6 mm) fasteners into a rigid horizontal surface, leaving the heads slight-
B
ly raised. Slide the Inverter/Charger back over the fasteners to engage
the mounting slots molded on the bottom of the Inverter/Charger cabinet.
Install and tighten two user-supplied ¼" (6 mm) fasteners into the
C
mounting feet molded on the front of the Inverter/Charger cabinet.
Using the measurements from the diagram, install two user-sup-
plied ¼" (6 mm) fasteners into a rigid horizontal surface, leaving
the heads slightly raised. B Slide the Inverter/Charger forward
over the fasteners to engage the mounting feet molded on the
C
front of the Inverter/Charger cabinet.
Install and tighten two
user-supplied ¼" (6 mm) fasteners into the mounting feet molded
on the rear of the Inverter/Charger cabinet. The rear feet extend
beyond the unit’s cabinet to provide for adequate ventilation
space behind the cooling fan(s); they should not be removed.
C
C
A
4½"
(11.4 cm)
B
6¾"
(17.1 cm)
27
6¾"
7
"
32
(17.1 cm)
(20 cm)
"
"
B
"
Vehicular and Non-Vehicular
(All models except 612)
• Horizontal Mount • Vertical Mount • Inverted Mount
"
A
Note: RV model cabinets may have different front panel features, but all mount as per the figure above, or via the Lateral
Mounting Bracket, illustrated at left.
Tripp Lite’s Lateral Mounting Bracket (pre-installed on select models, but also
available as an optional accessory from Tripp Lite*) provides a rigid surface
for lateral mounting in vehicular or non-vehicular applications. Consult the
instructions packed with the Lateral Mounting Bracket for complete mounting
information. Note: only models RV2012OEM and RV3012OEM are covered
under warranty for inverted mounting in a vehicular application. Such
mounting may be possible with other models, however, when your
Inverter/Charger is properly secured to a Lateral Mounting Bracket. As with
any mounting, user is responsible for determining if the Inverter/Charger can be
mounted safely relative to their application. Since securing an Inverter/Charger
to a Lateral Mounting Bracket which is not factory pre-installed will require
some modifications to the Inverter/Charger cabinet, please consult the Lateral
Mounting Bracket owner’s manual (available online at www.tripplite.com)
prior to purchasing.
* Contact Tripp Lite for ordering information.
Lateral Mounting Bracket
103
"
(26.4 cm)
Note: Centers between front and back mounting holes is 12" (30.5 cm).
9R
Battery Connection
Connect your Inverter/Charger to your batteries using the following procedures:
• Connect DC Wiring: Though your capable of delivering peak wattage at up to See the Feature Identification section to locate
Inverter/Charger is a
high-efficiency con-
verter of electricity,
its rated output
capacity is limited by
the length and gauge
of the cabling run-
ning from the bat-
tery to the unit. Use
the shortest length
and largest diameter
cabling (maximum
2/0 gauge) to fit
200% of its rated continuous wattage output the Main Ground Lug on your specific
for brief periods of time. See Specifications Inverter/Charger model. All installations
page for details. Heavier gauge cabling must comply with national and local codes
should be used when continuously operating and ordinances.
heavy draw equipment under these conditions.
• Connect Fuse: NEC (National Electrical
Tighten your Inverter/Charger and battery
Code) article 551 requires that you connect
terminals to approximately 3.5 Newton-
all of your Inverter/Charger’s positive DC
meters of torque to create an efficient con-
Terminals directly to a UL-listed fuse(s) and
nection and to prevent excessive heating at
fuse block(s) within 18 inches of the battery.
this connection. Insufficient tightening of
The fuse’s rating must equal or exceed the
the terminals could void your warranty. See
Minimum DC Fuse Rating listed in your
Specifications page for Minimum
Inverter/Charger’s specifications. See
Recommended Cable Sizing Chart.
DC Connectors
Dual DC Connectors (See
note at bottom of the page)
Specifications for fuse and fuse block rec-
your Inverter/Charger’s DC Input terminals.
Shorter and heavier gauge cabling reduces
DC voltage drop and allows for maximum
transfer of current. Your Inverter/Charger is
ommendations. See diagrams below for
proper fuse placement.
• Connect Ground: Using a #8 AWG wire
or larger directly connect the Main Ground
Lug to the vehicle’s chassis or earth ground.
WARNING! • Failure to properly ground your Inverter/Charger to a vehicle’s chassis or earth
ground may result in a lethal electrical shock hazard.
• Never attempt to operate your Inverter/Charger by connecting it directly to output from an
alternator rather than a battery or battery bank.
• Observe proper polarity with all DC connections.
Vehicular
Your Inverter/Charger’s Nominal DC Input Voltage must match the voltage of your battery or batteries—12 Volts in most vehicular applications.
It is possible to connect your Inverter/Charger to the main battery within your vehicle’s electrical system. In most vehicles, the
Inverter/Charger will be connected to one or more dedicated auxiliary (house) batteries which are isolated from the drive system to prevent
possible draining of the main battery.
3
7
2
8
1
12 Volts
12 Volt Inverter/Charger
12 Volts
5
12 Volt Main Battery Connection
4
7
8
6
2
12 Volts
1
12 Volt Inverter/Charger
12 Volts
5
3
2
12 Volts
12 Volt Main and Auxiliary (House) Battery Connection (Isolated Parallel)
1
2
3
4
5
12 Volt Alternator
Vehicle Battery Ground
6
12 Volt Main Battery
12 Volt Auxiliary (House) Battery
UL-Listed Fuse & Fuse Block (mounted
7
8
within 18 inches of the battery)
Battery Isolator
Large Diameter Cabling, Maximum 2/0 Gauge to Fit Terminals
8 AWG (minimum) Ground Wire
NOTE: Select models include two positive and two negative DC terminals. Using the same connection architecture illustrated in the diagrams, run two 2/0 gauge cables from the Inverter/Charger’s
two negative terminals to the battery’s single negative terminal; run two 2/0 gauge cables from the Inverter/Charger’s two positive terminals, through two UL-listed fuses and fuse blocks, or equivalent,
(one on each cable), to the battery’s single positive terminal. Use the equivalent of two 2/0 cables in all other connections within the battery system. Connection to Two DC Terminals: It is acceptable
to use two cables to connect your battery to only one positive and one negative DC terminal, however, your Inverter/Charger will provide reduced output power. It doesn’t make a difference which
positive and negative terminal you choose for the connection because both positive terminals are internally bonded and both negative terminals are also internally bonded. In this connection you
must run one positive cable through one user-supplied UL-listed fuse and fuse block.
10R
AC Input/Output Connection
To avoid overloading your Inverter/Charger, match the power requirements of the equipment you plan to run at any one time (add their total
watts) with the output wattage capacity of your Inverter/Charger model (see Specifications). Do not confuse “continuous” wattage with
“peak” wattage ratings. Most electric motors require extra power at start-up (“peak wattage”) than required to run continuously after start-
up, sometimes over 100% more. Some motors, such as in refrigerators and pumps, start and stop intermittently according to demand, requir-
ing “peak wattage” at multiple, unpredictable times during operation. DoubleBoost™ Feature: Tripp Lite Inverter/Chargers deliver up to twice
their nameplate rated wattage for up to 10 seconds,* providing the extra power needed to cold start heavy-duty tools and equipment.
OverPower™ Feature: Tripp Lite Inverter/Chargers deliver up to 150% of their name-plate rated wattage for up to 1 hour,* providing plenty
of reserve power to reliably support tools and equipment longer.
* Actual duration depends on model, battery age, battery charge level and ambient temperature.
Connection for Models with Cords and Receptacles
Plug the Inverter/Charger’s AC input cord into an outlet providing 120V AC, 60Hz. power. Make sure that the circuit you connect your
Inverter/Charger to has adequate overload protection, such as a circuit breaker or a fuse. Plug your equipment into the Inverter/Charger’s AC
receptacles. Any equipment you connect to it will benefit from your Inverter/Charger’s built-in ISOBAR® surge protection!
Warning! Consult a qualified electrician and follow all applicable electrical codes and requirements
for hardwire connection. Disconnect both DC input and AC utility supply before attempting hardwiring.
Connection for Models with Hardwire Terminals
Output Connection Requirement: UL requires that the output terminals of
all hardwire Inverter/Charger models must be connected to UL-listed
GFCI receptacles (required receptacle manufacturer/model series: Leviton 6599).
“FOR USE WITH COPPER WIRE ONLY”
HOT IN
NEUTRAL IN
2
GROUND IN
Single Input/Output Models
Input: Connect incoming wires to the hot (brown) , neutral (blue)
3
GROUND OUT
2
3
1
4
5
HOT OUT
1
and ground* (green) terminals
.
NEUTRAL OUT
Output: Connect outgoing wires to the hot (black) 4 , neutral (white)
5
Note: Ground Bond Connection, Supplied
1
and ground* (green) terminals .
Replace cover plate and tighten screws.* If the incoming conduit only contains two wires (hot and neutral), the incoming conduit must be bonded to the main ground lug on the unit. In any case,
the incoming conduit must be bonded to earth or vehicle ground, and the incoming conduit must be bonded to the outgoing conduit.
Dual Input/Output Models
Select models provide higher bypass power capacity by enabling connection of two separate
AC input sources. These two sources can be either two 120V legs split from a single 240V
service (with opposite phase on each 120V leg) or two different 120V sources. The
Inverter/Charger will only supply 120V output power and WILL NOT provide 240V output
even if it is connected to inputs from a split 240V service when in inverter mode. When the
Inverter/Charger is receiving AC power, it can supply connected loads with up to 20 amps
of power on each circuit**. When the Inverter/Charger is not receiving AC power, and has
switched to inverting DC battery power, it can supply connected loads with various amper-
age levels (see “Maximum Output AC Current” in Specifications section) on BOTH circuits.
Dual input/output models provide for either: a) dual-source inputs and outputs; b) single-
source input and output; or c) single-source input and dual-source outputs (with AC OUT
2 power only available in invert mode). Connect user-supplied wire and conduit to the con-
nections as follows:
AC IN 1
AC IN
1
HOT
NEU
GND
-
-
-
BROWN
BLUE
GRN/YEL
AC IN
2
AC IN 2
AC OUT 2
AC OUT 1
HOT
NEU
GND
-
-
-
GRAY
WHITE
GRN/YEL
AC OUT
1
HOT
NEU
GND
-
-
-
BLACK
YELLOW
GRN/YEL
AC OUT
2
HOT
NEU
GND
-
-
-
ORANGE
RED
GRN/YEL
Input: Connect incoming wires to hot (black for AC IN 1, black for AC IN 2), neutral
(white for AC IN 1, white for AC IN 2) and ground (green/yellow) wires.
Output: Connect outgoing wires to hot (black for AC OUT 1, black for AC OUT 2), neutral
(white for AC OUT 1, white for AC OUT 2) and ground (green/yellow) wires.
Dual-Source Input/Output*
Single-Source Input/Output*
• If you only have a single 120V AC input source, you must
connect it to AC IN 1.
• If you only have a single output circuit, you must connect it to
AC OUT 1
• AC IN 1 will only provide line power to AC OUT 1.
• AC IN 2 will only provide line power to AC OUT 2.
• Inverted battery power is supplied to both AC OUT 1 and AC OUT 2.
* Single-Source or Dual-Source Input/Output Connection: As well as supplying power to connected loads, AC IN 1 also provides power to the battery charger. If you connect a large load to AC OUT 1,
you should select a more limiting battery charger setting (see “Select Battery Charger-Limiting Points”) or you may experience continual nuisance tripping of the electrical service (source) circuit
breaker which supplies AC IN 1. The Inverter/Charger will only measure the current at AC OUT 1 to automatically limit the charger rate. AC IN 2 input current is passed through to AC OUT 2 with-
out measurement. Single-Source Input/Dual-Source Output Connection: You may connect AC IN 1 and AC IN 2 to a single source to provide power to AC OUT 1 and AC OUT 2. However, the loads connected to
AC OUT 2 will not be measured for the purpose of automatic charger limitation. This could result in occasional tripping of the electrical service (source) circuit breaker. If this occurs, reduce the load on AC OUT
2 until nuisance tripping stops.
** Load circuit breaker limited
11R
Service
If you are returning your Inverter/Charger to Tripp Lite, please pack it carefully, using the ORIGINAL PACKING MATERIAL that came
with the unit. Enclose a letter describing the symptoms of the problem. If the Inverter/Charger is within the warranty period, enclose a copy
of your sales receipt. To obtain service you must obtain a Returned Material Authorization (RMA) number from Tripp Lite or an authorized
Tripp Lite service center.
Maintenance
Your Inverter/Charger requires no maintenance and contains no user-serviceable or replaceable parts, but should be kept dry at all times.
Periodically check, clean and tighten all cable connections, as necessary, both at the unit and at the battery.
Troubleshooting
Try these remedies for common Inverter/Charger problems before calling for assistance. Call Tripp Lite Customer Service at (773) 869-1234
before returning your unit for service.
Battery Indicator Lights
Operating Mode Switch
OFF
(LESSER
LOAD
MAX
(GREATER
LOAD
ON)
Operation Indicator Lights
ON)
SYMPTOM
PROBLEMS
CORRECTIONS
No AC Output
Unit is not properly connected to utility power
Connect unit to utility power.
(All Indicator Lights are OFF)
Operating Mode Switch is set to “OFF” and AC input
is present.
Set Operating Mode Switch to “AUTO/REMOTE” or “CHARGE ONLY”.
This is normal when the Operating Mode Switch is set to
“CHARGE ONLY” and AC input is absent.
No correction is required. AC output will return when AC input
returns. Set Operating Mode Switch to “AUTO/REMOTE” if you
require AC output.
Circuit breaker is tripped.
Reset circuit breaker.
Unit has shut down due to battery overcharge (preventing
battery damage). The problem may be with connected
auxiliary chargers, if any, or with the unit’s charger.
Disconnect any auxiliary chargers. Reset by moving Operating Mode
Switch to “OFF”. Wait 1 minute and switch to “AUTO/REMOTE” or
“CHARGE ONLY.” If unit remains in shutdown mode after several
attempts to reset, contact Tripp Lite Customer Service for assistance.
Unit has shut down due to excessive battery discharge.
Unit has shut down due to overload.
Use an auxiliary charger* to raise battery voltage. Check external
battery connections and fuse. Unit automatically resets when
condition is cleared.
Reduce load. Reset by moving Operating Mode Switch to “OFF”.
Wait 1 minute. Switch to “AUTO/REMOTE” or “CHARGE ONLY”.
Battery Not Recharging
(AC Input Present)
Connected batteries are dead.
Battery fuse* is blown.
Check and replace old batteries.
Check and replace fuse.*
Battery cabling* is loose.
Check and tighten or replace cabling.*
Unit has shut down due to battery overcharge (preventing
battery damage). The problem may be with connected
auxiliary chargers, if any, or with the unit’s charger.
Disconnect any auxiliary chargers. Reset by moving Operating Mode
Switch to “OFF”. Wait 1 minute and switch to “AUTO/REMOTE” or
or “CHARGE ONLY.” If unit remains in shutdown mode after several
attempts to reset, contact Tripp Lite Customer Service for assistance.
Input circuit breaker is tripped.
Reset circuit breaker.
All Three Battery Indicator Lights
Are Slowly Flashing.
(½ Second Flashes)
Battery is excessively discharged.
Use an auxiliary charger* to raise battery voltage. Check external
battery connections and fuse. Unit automatically resets when
condition is cleared.
All Three Battery Indicator Lights
Are Rapidly Flashing
(¼ Second Flashes)
Battery is overcharged. Unit will shut down to prevent
battery damage. The problem may be with connected auxiliary Switch to “OFF”. Wait 1 minute and switch to “AUTO/REMOTE” or
chargers, if any, or with the unit’s charger.
Disconnect any auxiliary chargers. Reset by moving Operating Mode
“CHARGE ONLY.” If unit remains in shutdown mode after several
attempts to reset, contact Tripp Lite Customer Service for assistance.
Red “LOW” Battery
Indicator Light Is Flashing
Battery voltage is low. Unit will automatically shut down
after 5 seconds to protect battery from damage.
Make sure that AC power is present in order to recharge batteries.
Reset by moving Operating Mode Switch to “OFF then to
“AUTO/REMOTE” or “CHARGE ONLY”.
False reading due to undersized or
insufficiently connected DC cabling.
Use sufficient size DC cable sufficiently connected to
Inverter/Charger.
Red “LOAD” Operation
Indicator Light flashing
Inverter is overloaded. Unit will automatically shut down
after 5 seconds.
Reduce load. Reset by moving Operating Mode Switch to “OFF”.
Wait 1 minute. Switch to “AUTO/REMOTE” or “CHARGE ONLY”.
* User-supplied.
12R
200510095 93-2144
|